
Mike Naberezny
Principal
Maintainable Software

Best Practices of
PHP Development

Matthew Weier O’Phinney
PHP Developer
Zend Technologies

About Us

 PHP Developer, Zend Technologies
• Production site maintenance and deployment
• Internal web services
• Zend Framework contributor

 Open Source Contributor
• PEAR
• Cgiapp
• Solar

Matthew Weier O’Phinney

About Us

 Coauthored Zend PHP 5 Certification
 Professional software engineer for over ten years

at some large companies
 Dynamic language advocate

• Python Developer (6 years)
• PHP Developer (about 4 years)
• Ruby Developer (1.5 years)

 Open Source Contributor
 Principal, Maintainable Software LLC

Mike Naberezny

About You

 Can you read your own code? Can others?

 Is your software documented?

 More importantly, is your software tested?

 Are you using source control?

 Does your team work efficiently?

 Do you push buggy software into production?

Agenda

 Programming
• Coding Standards
• Documentation
• Testing

 Tools and Processes
• Collaboration
• Source Control
• Deployment

 Q&A

Programming

Coding Standards

Documentation

Testing

Programming

Coding Standards

Coding Standards

 Focus on code, not formatting

 Consistency

 Readability

 Collaboration

Coding Standards

 Don’t invent your own standard. You are not special
and your PHP source code is not unique.

 Use an established standard
• Be objective
• Minimize politics when choosing
• Use as requirement when hiring or outsourcing
• Encourage reuse
• Compatible with many PHP projects

Coding Standards

 Popular Library
 Issues have already been debated
 Well known and accepted (more than any other)
 Basis for many open source PHP projects

• Horde*
• Solar
• Zend Framework

PEAR Coding Standard

* The PEAR coding standard was largely adopted from Horde.
 - Chuck Hagenbuch, Founder of the Horde project

Coding Standards

 Class names are CamelCased, with an initial cap,
using underscores to separate logical package and
code boundaries:

• Spreadsheet_Excel_Writer

• Services_Google_AdWords

Naming Conventions

Coding Standards

 Files
• Class name used to name file
• .php suffix
• Class name underscores convert to directory

separator:
• Spreadsheet_Excel_Writer
• Spreadsheet/Excel/Writer.php

• One class per file, no loose PHP code

Naming Conventions

Coding Standards

 Variable names are camelCased, with the initial
character lowercased

 Constant names are ALL_CAPS with underscores
for word separators

 Private methods and properties are prefixed with
an _underscore

Naming Conventions

Coding Standards

 One True Brace
• Functions and Classes have the opening brace

on the line following the declaration, at the
same indent level

• Control structures keep the opening brace on
the same line as the declaration

 Indentation
• Spaces only; no tabs
• Four (4) spaces per level of indentation
• Purpose is consistency of viewing

Coding Standards

 All control structures use braces; no one liners
 Keep lines 75-85 characters in length, maximum
 No shell-style comments (#)

Design Patterns

 Reusable ideas, not code

 Proven solutions to common design problems

 Better communication through shared vocabulary

Programming

Documentation

Documentation

 Source Documentation
• phpDocumentor

 End User Documentation
• DocBook

Source Documentation

 phpDocumentor tags are the most used standard for
generating documentation from PHP source code.

 Uses annotation tags in source comments very similar to
those used by Javadoc.

 Other documentation generators, such as Doxygen, support
these same tags. Don’t invent your own tags.

 Supported by a number of different IDEs. Zend Studio is
perhaps the most prevalent.

phpDocumentor http://phpdoc.org

Source Documentation

Completely Undocumented

(is your’s like this?)

Source Documentation

 Document All Source Elements

•Files, Classes, Methods, Variables, and more

•Comments, Type Hints, other useful metadata

Source Documentation

 Write Meaningful Documentation

•Thoughtful Comments, Types, Throws, etc.

•Actually reflects source code (comments can lie)

Source Documentation

 Organize Your Code

•Learn to utilize @category, @package, @subpackage

•PEAR style is the de facto standard

•Always Prefix Your Classes (Foo_)
•http://paul-m-jones.com/organizing-php-projects.pdf

Source Documentation

Properly documenting
return types can greatly
enhance the experience
for many IDE users.

Some IDEs introspect doc
tags to infer information
about the source.

Source Documentation

Automatically generate sophisticated documentation in many formats

End User Documentation

 Powers the php.net documentation and a large
number of other open source projects

 Proven and used by publishers like O’Reilly
 XML-based
 Advanced editors available but not required
 Simple format is easy to learn and use
 Free toolchain runs on *nix or Cygwin

DocBook

Programming

Testing

Testing

Unit Testing

Test Driven Development

Unit Testing

 If there is any single “best practice” that
PHP developers should learn, testing is it.*

* Along with learning to write object oriented code that has some hope of being maintained.

Unit Testing

 Unfortunately, huge amounts of PHP code is procedural
spaghetti, not object oriented, let alone tested.

 Code without tests is fragile and will regress.

 No time to write tests? Start writing tests instead of
reloading your browser and doing senseless debugging.
Increase your productivity and product quality.

 print() and var_dump() are not testing tools.

Unit Testing

Class representing a person

Until named otherwise, the
person has a default name.

The name can be changed.

The new name cannot be
empty.

Unit Testing
Testing the Person object

Each test examines a
discrete behavior or “unit”
of functionality of the
Person object.

Each test asserts that the
behavior of the object
meets our expectations.

If a code change breaks the
behavior, the tests will fail
and show the regression.

Unit Testing

What else could go wrong here?

Change the method to make it work properly

by only accepting valid strings.

Write a test to assert that its new behavior

meets your expectations.

Unit Testing

 Learning to write good object oriented code that is testable
takes practice and discipline.

 Using Classes != Object Oriented Design

 A great deal of PHP code is extremely difficult to test due to
poor design. Learn how to design for testability.

 No longer fear changing code because your tests will fail if
you break something.

 Stop reloading your browser.

Test Driven Development

 Write the tests first.

 First make a test that fails because a new behavior does not
yet exist. (go red)

 Write the code to make the test pass. (get to green)

 Refactor to keep your code clean and DRY.

 Repeat.

 Please learn more about testing. Start here:

http://www.phpunit.de/pocket_guide/

Tools & Processes

 Collaboration

 Source Control

 Deployment

Tools & Processes

Collaboration

Collaboration

 Messaging
 Web Collaboration
 Trac

Overview

Working with a geographically separated team is
increasingly common and requires the same open
communication channels as working in the same office.

Collaboration

Messaging

Collaboration: Messaging

 Email

 Instant Messaging

 VOIP

 Face-to-Face (old technologies are best)

Technologies

Collaboration: Messaging

 Documenting and communicating decisions (be
careful)

 Distribution lists
 Examples and use cases
 Review of code implementations
 Collaborating on specifications

Email: When to use it

Collaboration: Messaging

 Time critical tasks: “I need this now!”

 Quick questions: “Can you…?” “Where is…?”

 Keep in mind spam filters; messages get lost

Email: When not to use it

Collaboration: Messaging

 Quick questions: “Can you …?” “Where is…?”

 Time critical tasks (e.g., deploying code or
servers)

 Quick code snippet review: “Will this work?”

 Multi-way conversations in real-time

IM: When to use it

Collaboration: Messaging

 Decision making (drive by decisions)

 Anything important that should be documented

 Long conversations

IM: When not to use it

Collaboration: Messaging

 Sometimes hearing something leaves a different
impression than reading it

 Meetings

 Get to know people by spoken word (and possibly
visual, if the VOIP solution has integrated video)

VOIP: Why?

Collaboration: Messaging

 Meetings

 Decision making

 Time critical tasks (e.g., deploying code or
servers)

VOIP: When to use it

Collaboration: Messaging

 Discussing code implementation details
“Then take dollar-var and push it through
fooAction; use the return value to append to
dollar-underscore-bar.”

 Quick questions

VOIP: When not to use it

Collaboration: Messaging

 Meet in person as often as time and budget allows

 Builds camaraderie

 Easier to understand written word when you can
hear the voice behind it

Face-to-Face

Collaboration: Messaging

 Communicate often
 Communicate in a variety of media
 Be polite
 Provide context
 Messaging can be distracting; build ‘offline’ time

into each day

Summary

Collaboration

Web Collaboration

Collaboration: Web Collaboration

 Wikis

 Google Docs & Spreadsheets

 pastebin.com, paste2.org

 Thick-client technologies

Technologies

Collaboration: Web Collaboration

 Central documentation source; best place to
record decisions and processes

 Easy markup

 Plugins often provide extra functionality

Wikis

Collaboration: Web Collaboration

 Writely and Spreadsheets

 Invite-only for viewing and editing; control who
sees what, and who can edit it

 Real-time updates

 Who owns the data? How long will it be available?

Google Docs & Spreadsheets

Tools & Processes

Source Control

Source Control

Problems Solved

 How do I know if somebody did something?
How do they know I did something?

 How do I get updates from others? How do I
push my updates out to them?

 Do we have the old version? What changed?

Source Control

 Methodology
• Developers work directly on local repositories
• Changesets are shared between repositories

 Examples
• GNU Arch: Developed for Tracking Kernel

Development
• Darcs: “Theory of Patches”
• Git: Linux Kernel Development

Distributed

Source Control

 Methodology
• Developers work on local checkouts
• Changesets checked in/out of a central repository

 Examples
• CVS, Concurrent Versions System
• Subversion: A compelling replacement for CVS

Non-Distributed

Source Control

 Create repository
 Perform local checkout
 Write code
 Record changes
 Check changes in to repository
 Check for repository updates
 Lather, rinse, repeat

Workflow

Source Control

 Central repository makes administration and
control easier

 Central repository lends itself to automated
processes (e.g., commit notifications,
documentation builds, etc.)

Advantages

Source Control

 Harder to move between servers reliably

 Author verification left to OS; no signed revisions
• Note: Subversion’s pre-commit hooks allow

greater flexibility in this regard

Disadvantages

Source Control: Subversion

 A compelling replacement for CVS
 Functions like a superset of CVS
 Migrate existing CVS repositories to SVN
 Popular with many open source projects
 Easily move files between directories while

preserving histories
 Simplified process of tagging and branching
 Transactions for when things go wrong
 Extensible and supported by excellent tools

Subversion

Source Control: Trac

Trac

http://trac.edgewall.com/

Source Control: Trac

 Simple Installation
 Repository Browser
 Wiki
 Issue Tracker
 Roadmap / Milestones
 Plugins
 Great Collaboration Tool

Source Control: Trac: Tips

Link Changesets and Tickets
Changeset linking to ticket

Ticket comment linking to changeset

Source Control: Trac: Tips

Timeline

Source Control: Trac: Tips

Reports

Source Control: Trac: Tips

 /trac/roadmap
 Create “projects” or goals
 Assign deadlines
 Attach tickets by milestone
 View progress as tickets are opened and closed

against the milestone

Roadmap / Milestones

Source Control: Trac: Tips

 http://trac-hacks.org/wiki/EmailToTracScript
 Integrates with local MTA and Trac install
 Send email to ticket address to create new

tickets
 Reply to Trac-generated issue emails, and

comments to the issue will be created
 Email attachments are attached to the issue

Email2Trac

Source Control: Trac: Tips

 http://muness.textdriven.com/trac/wiki/tags

 Tag wiki entries, issues, changesets for easy
searching and categorization

 Create tag clouds

 List items by tag

Tags

http://muness.textdriven.com/trac/wiki/tags
http://muness.textdriven.com/trac/wiki/tags

Tools & Processes

Deployment

Deployment

 Never edit files on a production server!

 Deploy from repository tags.

 Don’t go from Development to Production. Use a
Staging server to mimic the Production
environment.

 Establish a Deployment Release Procedure (DRP).

Deployment

 Instead of overwriting files on the web server, use
a symlink. After the new deployment is installed,
switch the symlink to point to it. If anything goes
wrong, just switch it back.

 Don’t manually interact with the Production
server in any way. Write scripts to build and
deploy the application without any human
intervention after starting.

Deployment

 Write acceptance and integration tests for your
application that run on deployment.

 Investigate open source deployment tools like
Capistrano to help further automate the process.

 Use server management tools like Supervisord to
continuously monitor your deployment.

 Continue to run your tests periodically on a
scheduler to detect failures.

Wrap Up

Questions?

Wrap Up

Thanks!

Matthew Weier O’Phinney
PHP Developer
Zend Technologies
matthew@zend.com
http://weierophinney.net/matthew

Mike Naberezny
Principal
Maintainable Software
mike@naberezny.com
http://mikenaberezny.com

mailto:matthew@zend.com
mailto:matthew@zend.com
http://weierophinney.net/matthew
http://weierophinney.net/matthew
mailto:mike@naberezny.com
mailto:mike@naberezny.com
http://mikenaberezny.com
http://mikenaberezny.com

