
http://www.phparch.com/redir/681/272

Volume 5 Issue 4 • php|architect • 9

Introducing the Zend Framework

A
t the Zend/PHP Conference in October
of 2005, Zend Co-founder and CEO Doron
Gerstel gave a keynote address to a packed
auditorium. It was here that he announced
the PHP Collaboration Project.

The PHP Collaboration Project, as he described
it, would be a remarkable effort that would create a
collaborative playing field around PHP and bring together
companies both small and large, individual contributors,
and community members to enlarge the PHP ecosystem.
The project’s goal was very simply stated: further advance
the use of the PHP programming language. Mr. Gerstel
announced that a collaborative industry effort was
necessary to continue PHP’s penetration into business
markets while at the same time maintaining PHP’s already
strong leadership position as the dominant programming
language for the Web.

To accomplish these goals, Zend and its partners
would initiate three parallel efforts under the umbrella
of the PHP Collaboration Project. First, a proposal would

FEATURE

PHP: 5.0.4 or higher

O/S: Any supported by PHP

SOFTWARE: Zend Framework 0.1.3, a PDF viewer

LINK: http://framework.zend.com

TO DISCUSS THIS ARTICLE VISIT:
http://forum.phparch.com/296

introducing

A First Look From a Main Contributor

be made to the Eclipse Foundation for the creation of a
new, open-source development environment based on the
Eclipse Rich Client Platform (RCP). Second, Zend would
rebuild its Developer Zone from the ground up to be a
better resource and collaboration hub for professional
PHP developers. Third, Zend would spearhead the Zend
Framework—an open-source software stack to power
web applications written in PHP 5.

CODE DIRECTORY: zendframework

by MIKE NABEREZNY

http://framework.zend.com
http://forum.phparch.com/296

Volume 5 Issue 4 • php|architect • 10

Introducing the Zend Framework

and its partners to further enhance the development
experience.

Don’t change PHP—it’s already a great platform (even
without a framework!). This means keeping components
as simple as possible for mainstream users by not trying
to write a book about design patterns or trying to develop
purposely large class hierarchies. Zend Framework’s
success should be driven by the same forces that drive
PHP’s success: simple and elegant solutions that work
well and can be easily understood.

Embrace collaboration and community to further
advance PHP 5 programming. The Zend Framework project
welcomes and encourages other PHP frameworks. We
celebrate diversity and choice as a very large part of PHP’s
success. Our framework will be as modular as possible so
users may choose to use as much or as little of it as they
like. Companies with existing code are encouraged to use

components from the Zend Framework to further their
own projects.

Positively contribute to the PHP 5 ecosystem and
the PHP Collaboration Project. Zend Framework aims to
further help PHP 5’s adoption as an industry standard
for businesses developing Web-based applications. This
must be done through many channels: providing source
code with a license and IP rights suitable for business
purposes, promoting PHP best practices, and developing
relationships with businesses using PHP 5.

For managers, Zend Framework represents a significant
industry effort to supply quality PHP source code that’s
suitable for commercial projects and backed by real
companies. For PHP 5 developers, Zend Framework offers
something for almost everyone. It provides a library of
useful components that can be used by any project, and
it will also offer a complete, integrated software stack
for building websites without depending on any other
libraries.

Getting Started
Before beginning with the Zend Framework, it’s important
to recognize that it is still a preview release. While it
is very exciting and useful in its present form, being a
preview release means that it is not intended for use
on production websites and that it will evolve from its

“We believe this initiative will be a positive catalyst to help propel
the open source community to new levels of innovation.”

 - Jon Bork, Director of Intel’s Open Source Program Office

Delivering on the Promise
On March 3rd of this year, after months of hard work by
dozens of people from many companies, the promise of
the PHP Collaboration Project was realized when the
first milestones were met on all three efforts. A formal
proposal was submitted and approved by the Eclipse
Foundation with support expressed by IBM, Intel, SAP,
and Actuate. The new Zend Developer Zone also opened
its doors to the public and posted its first article on
professional PHP development.

On this day, the first preview release of the Zend
Framework source code was also released, and a new project
site opened to support it at http://framework.zend.com.
The release, although still very much in its infancy,
garnered so much fanfare among potential users in the
PHP “blogosphere” that one blogger declared reviews of
the framework to be a “blog worm,” overwhelming the

PHP news aggregators with Zend Framework reports. The
release sparked a surge of downloads, and a Slashdotting.
Hundreds of potential users subscribed to the mailing list
that became active overnight.

Goals of the Zend Framework
Zend Framework was immediately set apart from all other
frameworks from its inception because it is backed with
a promise of active development and continuous support
by Zend, its many commercial partners, and prominent
community members. This is perhaps the most important
differentiator between the Zend Framework and prior
efforts. However, some of the Zend Framework’s goals are
equally unique, as stated on its website.

Provide a repository of high quality components that
are actively supported. These components must be written
entirely in PHP 5 and be E_STRICT compliant. Full API and
end-user documentation must always be provided and
continuously maintained.

Provide a complete system for developing web
applications powered by PHP 5. Zend Framework aims to
provide an architecture for developing entire applications
with no other library dependencies. This code will always
be actively developed, tested, and supported by Zend
and the PHP Collaboration Project. In time, this will
also include automation and tooling developed by Zend

http://framework.zend.com
http://phpproject.us

Volume 5 Issue 4 • php|architect • 11

Introducing the Zend Framework

present form before the final release. New features are
constantly being added and some may even be removed
as it is fine tuned. That said, some companies have
already deployed Zend Framework in its present form on
some high-traffic sites, including parts of zend.com. Also,
many parts of the Zend Framework were extracted and
then refactored from successful websites built by Zend
and its PHP Collaboration Project partners.

The first hint that the Zend Framework is different
from some traditional libraries is its distribution. The
Zend Framework is always downloaded as one large body
of code and not many separate pieces. This means that
interdependent components are always tested together
and problems caused by incompatible component versions

can be minimized.
The Zend Framework is very convenient to

download and easy to install. The latest version can
always be downloaded as a complete package from
http://framework.zend.com/download/zip. Some users on
UNIX-like operating systems prefer a tarball, which is always
available from http://framework.zend.com/download/tgz.

After downloading, installation is very simple. Just
extract the files to a directory on the development server
where they will be used. First, after downloading a new
version, be certain to review the README.txt file that
ships with the distribution. This always contains the
latest news and important instructions that are worth
reading. The file will always be short and to the point.
After reading it, the only other installation step is to add
the library/ directory from the archive to the system’s
include_path. If this is not possible or desirable for some
reason, simply place a call to set_include_path() at the
top of scripts that will use the framework.

Learning by Example
One of the key tenets of the Zend Framework is that it
should be simple to use and very well documented. Zend
believes that the framework should be simple enough for

everyone, even new users, but powerful enough to be a
staple of seasoned developers—just like PHP itself. Also
in the PHP spirit, the Zend Framework has a great online
manual, available at http://framework.zend.com/manual,
that is full of examples showing how to use the code.
The manual is currently available in several languages
and more translations are underway..

While the Zend Framework ships with everything
that one would expect in a framework, such as database
adapters and a Model-View-Controller (MVC) system, these
have been done well before and alone aren’t compelling
reasons to use the framework. It also ships with a number
of very specialized components that fill common needs
in web development that haven’t been served well by

prior efforts. The Zend Framework is all about solving the
common problems that seem to be encountered by many
PHP developers.

The best way to learn about new software is always
to try and put it to practical use through some sort of
real-life test. Let’s look at four of these components in a
realistic business scenario.

Sample Components
The following Zend Framework components will be
demonstrated in this article:

Zend_XmlRpc_Client – With PHP 5 came the
introduction of the excellent SOAP extension, which
boiled down complicated SOAP-based web services to look
and feel like native PHP objects. The XML-RPC protocol is
still very popular on the web but PHP never delivered an
extension like SOAP to make these services easy to use.
PHP developers consuming XML-RPC web services often
must manually convert data types or juggle cumbersome
messaging objects. Zend_XmlRpc_Client fills the gap and
provides a client that’s very similar to SOAP in its fully
automatic operation and ease of use.

Zend_Pdf – PDF generation has long been a point
of distress for PHP developers. While there are existing

Zend and its partners initiated three parallel
efforts under the umbrella of
the PHP Collaboration Project.

http://zend.com
http://framework.zend.com/manual
http://framework.zend.com/download/zip
http://framework.zend.com/download/tgz
http://php.net/set_include_path

Volume 5 Issue 4 • php|architect • 12

Introducing the Zend Framework

The first hint that the Zend Framework
is different from some traditional libraries

is its distribution.

PDF packages available for PHP, there are some problems
with them. Many packages either have a license which
prevents them from being deployed for free in commercial
settings, or require special PHP extensions to be loaded.
Most are not feature-complete and it’s not uncommon to
find PHP programs scraping the output of PDF command
line tools to fill gaps in these libraries. To solve these
problems, the Zend Framework includes its own PDF
generation toolkit that can both generate a new PDF and
modify existing ones, without any of these problems.

Zend_Mail – Almost every PHP web application needs
to send email. While there are many components available
to do this, there are various levels of complexity and
it’s difficult to find a PHP 5 component to do it that’s

E_STRICT compliant. Zend_Mail provides a simple solution
that solves the majority of email sending problems
without unnecessarily forcing developers to learn about
the complexity of email formats and MIME encoding.

Zend_Search_Lucene – The Apache Lucene project is a
fast and feature-rich search engine written in Java. PHP
developers have long needed a search solution that is
powerful but without requiring Java, web service calls, or
complicated APIs. This component is a port of the Java
Lucene engine, reimplemented entirely in PHP 5 source
code (no extensions required). Since it is a direct port,
Zend_Search_Lucene is fully binary compatible with the
index file formats of its Java cousin. Zend_Search_Lucene
brings unprecedented search capabilities to PHP
applications and it doesn’t even require a database.

These components are only four out of a much larger
body of useful components that build the foundation for
the Zend Framework.

Solving a Real Problem
To demonstrate the use of these components, we’ll build
a simple solution to solve a real problem that might
face mainstream PHP developers. In our simplified case,
let’s say that zend.com needs to create an invoice for a

customer. This process will involve collecting data for the
invoice, building the invoice itself, emailing the invoice
to the customer, and later searching invoices that have
been sent. All of these tasks can be done painlessly with
the Zend Framework.

The first step in creating the invoice will be
gathering the information for it. Like many modern e-
commerce websites, zend.com has developed a network
of internal web services based on XML-RPC to aggregate
data throughout its network of servers. We’ll simulate
this system by connecting to an example server using
Zend_XmlRpc_Client. This will collect the raw information
required for the invoice.

Next, a customer invoice will be created. Text-based

invoices are fine but one way to stand out, or simply
to display information in a more readable fashion, is
to provide an invoice in the Portable Document Format
(PDF). We’ll use a pre-made, rich PDF template that
includes some niceties like the Zend logo. Zend_Pdf will
be used to read the template and then populate it with
the customer’s data.

Once a nice PDF document has been generated for
the invoice, Zend_Mail will email it off to the customer.
Finally, the invoice will be stored in a search index to
show how Zend_Search_Lucene could be used to find it
again at some later time.

Retrieving the Invoice Data
For this exercise, an example web service has been
created to simulate the internal service that would
return the data for the invoice. Our web service server is
hosted on framework.zend.com and is based on XML-RPC.
The endpoint is http://framework.zend.com/xmlrpc. We’ll
connect to it with Zend_XmlRpc_Client with the code
that is shown in Listing 1.

Most XML-RPC servers logically divide their methods
into namespaces. For example, most contain a set of de
facto “system.” methods like system.listMethods(). For

http://zend.com
http://framework.zend.com/xmlrpc

the purposes of this text, our namespace is phparch. The
Zend_XmlRpc_Client attempts to make remote methods
look and feel as similar to native PHP methods as
possible. It uses the object overloading capabilities
introduced in PHP 5 to map the XML-RPC namespaces
into familiar PHP object syntax. For example, a call
to system.listMethods() would be written in PHP as
$server->system->listMethods().

The example server contains only one method
required for this exercise: phparch.getInvoice(). The
return payload from the server will be an XML response
but this will automatically be converted to a PHP array by
Zend_XmlRpc_Client. The array of invoice data is shown in
Listing 2. Most of the invoice fields have been returned
as strings to simplify the examples.

Building the Invoice
Zend_Pdf can be used to create PDF documents entirely
from scratch and includes primitives for tasks like drawing

lines, shapes, and color fills.
Instead of drawing the entire invoice

programmatically, Zend_Pdf allows an existing
PDF document to be imported and then modified.
We’ve pre-made a PDF template for the invoice and
stored it at http://framework.zend.com/demos/phparch/
invoice-template.pdf. The template contains all of the
graphical elements and nice styling but lacks any actual
invoice data.

Listing 3 shows how Zend_Pdf is used to take an array
of data for the invoice, draw text onto the PDF invoice
template, and then save the invoice to disk. The resultant
PDF document can be opened with Adobe Acrobat or any
suitable PDF viewer.

Sending to the Customer
After putting polishing on the invoice document with
Zend_Pdf, it is ready to be delivered to the customer.
Zend_Mail is a simple component that takes the grunt
work out of constructing and sending email.

 1 <?php
 2
 3 /**
 4 * Example using of Zend_XmlRpc_Client to query an
 5 * XML-RPC web service. This example retrieves sample
 6 * invoice data from the Zend Framework website.
 7 */
 8
 9 require_once ‘Zend/XmlRpc/Client.php’;
10
11
12 // Instiantiate a new XML-RPC client using the Zend Framework
13 // website as the XML-RPC endpoint.
14 $server = new Zend_XmlRpc_Client(‘http://framework.zend.com/xmlrpc’);
15
16
17 // Call phparch.getInvoice() on the server to get
18 // the dummy invoice data and dump the resulting array.
19 // All of the conversions to native PHP types are automatic.
20 Zend::dump($server->phparch->getInvoice());
21
22 ?>

LISTING 1

 1 array(2) {
 2 [“details”]=>
 3 array(7) {
 4 [“id”]=>

LISTING 2

 5 int(1)
 6 [“customer_name”]=>
 7 string(12) “Andi Gutmans”
 8 [“date”]=>
 9 string(11) “15-Mar-2006”
10 [“subtotal”]=>
11 string(5) “$1.50”
12 [“ca_sales_tax”]=>
13 string(5) “0.00%”
14 [“shipping”]=>
15 string(5) “$0.00”
16 [“grand_total”]=>
17 string(5) “$1.50”
18 }
19 [“items”]=>
20 array(1) {
21 [0]=>
22 array(6) {
23 [“product_name”]=>
24 string(18) “First product name”
25 [“quantity”]=>
26 string(1) “1”
27 [“list_price”]=>
28 string(5) “$1.50”
29 [“discount”]=>
30 string(5) “$0.00”
31 [“unit_price”]=>
32 string(5) “$1.50”
33 [“total_price”]=>
34 string(5) “$1.50”
35 }

LISTING 2 (CONT’D)

The Zend Framework includes its own
PDF generation toolkit that can both

generate new PDFs and modify existing ones.

Volume 5 Issue 4 • php|architect • 13

Introducing the Zend Framework

http://framework.zend.com/demos/phparch/invoice-template.pdf
http://framework.zend.com/demos/phparch/invoice-template.pdf

 1 <?php
 2
 3 /**
 4 * Demonstrate the Zend_Mail component by emailing the
 5 * completed PDF document from the previous example.
 6 */
 7
 8 require_once ‘Zend/Mail.php’;
 9
10
11 // Create a new Zend_Mail object
12 $mail = new Zend_Mail();
13 $mail->setFrom(‘sender@example.com’, ‘Sender Name’);
14 $mail->addTo(‘recipient@example.com’, ‘Recipient Name’);
15 $mail->setSubject(‘Invoice’);
16 $mail->setBodyText(‘Please see the invoice attached.’);
17
18
19 // Add the PDF file as an attachment to this mail. This
20 // example is simplified; always check that the file
21 // was read successfully by file_get_contents().
22 $file = file_get_contents(‘/path/to/your/output.pdf’);
23 $a = $mail->addAttachment($file);
24 $a->filename =’output.pdf’;
25
26
27 // Send the finished email to the customer.
28 $mail->send();
29
30 ?>

LISTING 4

 1 <?php
 2
 3 /**
 4 * Demonstrates creating a simple search index
 5 * using Zend_Search_Lucene.
 6 */
 7
 8 require_once ‘Zend/Search/Lucene.php’;
 9
10
11 // The first argument is the path to an empty directory where
12 // the index will be created. The seecond argument tells
13 // Zend_Search_Lucene to create a new index instead of reading
14 // an existing one.
15 $index = new Zend_Search_Lucene(‘/path/to/your/index’, true);
16
17
18 // Add a contact to the index. This could have come from
19 // the web service as demostracted earlier or anywhere else.
20 $doc = new Zend_Search_Lucene_Document();
21 $doc->addField(
22 Zend_Search_Lucene_Field::Text(‘customer’,
23 ‘phparchitect’));
24 $doc->addField(
25 Zend_Search_Lucene_Field::Text(‘contact’,
26 ‘Sean Coates’));
27 $index->addDocument($doc);
28
29
30 // Add another contact to the index.
31 $doc = new Zend_Search_Lucene_Document();
32 $doc->addField(
33 Zend_Search_Lucene_Field::Text(‘customer’,
34 ‘phparchitect’));
35 $doc->addField(
36 Zend_Search_Lucene_Field::Text(‘contact’,
37 ‘Marco Tabini’));
38 $index->addDocument($doc);
39
40
41 // Commit these changes to the index.
42 $index->commit();
43
44 ?>

LISTING 5
 1 <?php
 2
 3 /**
 4 * Build on the previous example by querying the web service
 5 * for sample data and then populating a PDF template to
 6 * generate an invoice.
 7 */
 8
 9 require_once ‘Zend/XmlRpc/Client.php’;
10 require_once ‘Zend/Pdf.php’;
11
12
13 // Get the dummy data for an invoice. In an actual application,
14 // be sure to sanitize any data received from foreign sources.
15 $s = new Zend_XmlRpc_Client(‘http://framework.zend.com/xmlrpc’);
16 $invoice = $s->phparch->getInvoice();
17
18
19 // Load the PDF template, go to the first page, and
20 // set the font for drawing text.
21 $pdf = Zend_Pdf::load(‘/path/to/your/invoice-template.pdf’);
22 $page = $pdf->pages[0];
23 $page->setFont(new Zend_Pdf_Font_Standard(
24 Zend_Pdf_Const::FONT_HELVETICA), 12);
25
26
27 // Write the customer details on the invoice. Simply
28 // call drawText() with the coordinates on the page.
29 $details = $invoice[‘details’];
30 $page->drawText($details[‘id’], 165, 560);
31 $page->drawText($details[‘customer_name’], 165, 540);
32 $page->drawText($details[‘date’], 165, 520);
33
34
35 // Write a line item. This would normally be done in
36 // a loop for all items but is simplified for the example.
37 $item = $invoice[‘items’][0];
38 $page->drawText($item[‘product_name’], 72, 455);
39 $page->drawText($item[‘quantity’], 290, 455);
40 $page->drawText($item[‘list_price’], 320, 455);
41 $page->drawText($item[‘discount’], 380, 455);
42 $page->drawText($item[‘unit_price’], 440, 455);
43 $page->drawText($item[‘total_price’], 500, 455);
44
45
46 // Write the remaining fields of the invoice.
47 $page->drawText($details[‘subtotal’], 500, 205);
48 $page->drawText($details[‘ca_sales_tax’], 500, 185);
49 $page->drawText($details[‘shipping’], 500, 165);
50 $page->drawText($details[‘grand_total’], 500, 145);
51
52
53 // Save the finished PDF document.
54 $pdf->save(‘/path/to/your/output.pdf’);
55
56 ?>

LISTING 3

 1 <?php
 2
 3 /**
 4 * Demonstrates searching the index that was created
 5 * by the previous example.
 6 */
 7
 8 require_once ‘Zend/Search/Lucene.php’;
 9
10
11 // Open the index for reading.
12 $index = new Zend_Search_Lucene(‘/path/to/your/index’);
13
14
15 /**
16 * Find a document within the index. Some interesting
17 * permutations to try:
18 * ‘customer:phparchitect’
19 * ‘contact:tabini’
20 * ‘customer:phparchitect -contact:tabini’
21 */
22 $hits = $index->find(‘customer:phparchitect’);
23
24
25 // Display the search results. It is not recommend to mix
26 // presentation in the program body, this is only an example.
27 foreach ($hits as $hit) {
28 echo ‘Score: ‘ . $hit->score . ‘
’;
29 echo ‘Customer Name: ‘ . $hit->customer . ‘
’;
30 echo ‘Contact: ‘ . $hit->contact . ‘
’;
31 echo ‘
’;
32 }
33
34 ?>

LISTING 6

Volume 5 Issue 4 • php|architect • 14

Introducing the Zend Framework

Volume 5 Issue 4 • php|architect • 15

Introducing the Zend Framework

Zend_Mail was contributed by one of the PHP
Collaboration partners, 100days.de, a German software
consultancy. It was extracted from code that they’ve used
on many websites. As such, Zend_Mail users benefit from
features implemented out of their experience sending
high volumes of email, such as protection against header
injections.

In Listing 4, a simple email is built and then the
PDF file is added as an attachment. It is then sent off
to the customer in one step. The billing process is now
complete.

Indexing and Searching
Data such as this invoice would normally be stored in
a database. However, this presents an opportunity to
demonstrate Zend_Search_Lucene, which is also suited for
the task.

Documents in Zend_Search_Lucene are divided into
fields. A document may have any number of arbitrary
fields, and many different documents can be stored
in the search index. Our invoice can also be logically
divided into fields and then stored in the index as
Zend_Search_Lucene documents. Listing 5 shows
everything that is needed to build a simple index with a
couple of sample documents.

Searching documents is simple and queries can be
built with Google-like strings or by constructing query
objects. Listing 6 demonstrates the former and pulls
documents from the index based on various criteria. This
is all the code that is required to perform some fairly
sophisticated searches.

These are very simplistic examples that are not the
best demonstration of Zend_Search_Lucene’s capabilities.
However, they do serve to show the simplicity of the
component and how quickly developers can index
and then search documents. For more information on
Zend_Search_Lucene, readers are invited to visit the

online manual to explore the search capabilities in
greater depth.

Wrapping Up
Through these examples, we’ve seen that the Zend
Framework offers powerful capabilities coupled with
ease-of-use. These small snippets can easily be expanded

to enhance the core services of any PHP 5 application.
These are only some of the components that are

presently offered. Components for reading RSS and
Atom feeds, as well as extensive web services support
for Amazon, Flickr, and Yahoo! are other examples. The
components in this article, as well as the others, will be
explored in greater detail in future articles.

Next Steps
As exciting as these components are, the Zend Framework
aims to be much more than just a component library.
Quite a few developers are working hard (and being paid)
to integrate these components into a full software stack
that will include an MVC architecture with many tools
for developing and deploying applications. While it’s still
early, a tremendous amount of progress has been made
and the number of industry partners involved is rapidly
turning the Zend Framework’s vision into reality.

The PHP community has also proven itself to be
invaluable and many members of the community have
made significant contributions. Readers are very strongly
encouraged to join the mailing list, contact Zend, and
get involved with this industry-wide effort that has
already begun to shape the future landscape of PHP
development.

MIKE NABEREZNY is a senior software engineer for Zend Technologies
in Cupertino, CA, where he develops the Zend Framework and other
products. He blogs about PHP and related technologies on his website,
http://mikenaberezny.com.

The PHP community has also proven
itself to be invaluable and many
members of the community have
made significant contributions.

http://mikenaberezny.com

http://www.phparch.com/redir/597/835

